کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
699797 | 890797 | 2012 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A MKL based on-line prediction for gasholder level in steel industry
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The real-time prediction for gasholder level is significant for gas scheduling in steel enterprises. In this study, we extended the least squares support vector regression (LSSVR) to multiple kernel learning (MKL) based on reduced gradient method. The MKL based LSSVR, using the optimal linear combination of kernels, improves the generalization of the model and reduces the training time. The experiments using the classical non-flat function and the practical problem shows that the proposed method achieves well performance and high computational efficiency. And, an application system based on the approach is developed and applied to the practice of Shanghai Baosteel Co. Ltd.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Control Engineering Practice - Volume 20, Issue 6, June 2012, Pages 629–641
Journal: Control Engineering Practice - Volume 20, Issue 6, June 2012, Pages 629–641
نویسندگان
Jun Zhao, Ying Liu, Xiaoping Zhang, Wei Wang,