کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7052804 | 1457459 | 2018 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A turbulent heat flux prediction framework based on tensor representation theory and machine learning
ترجمه فارسی عنوان
چارچوب پیش بینی شار حرارتی مبتنی بر تئوری نمایندگی تانسور و یادگیری ماشین
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
چکیده انگلیسی
The need of more sophisticated cooling schemes for gas turbine blades is continuously increasing, since the hot gas maximum temperature in gas turbines has a direct influence on the engine thermal efficiency. Here, predictions of the heat transfer by means of Computational Fluid Dynamics (CFD) can complement or even reduce the number of experimental investigations. However, the modelling of the turbulent heat fluxes in the Reynolds-averaged Navier-Stokes equations heavily relies on empirical approaches. We propose a new framework for the prediction of the turbulent heat fluxes based on machine learning and tensor representation theory. A data-driven model is constructed based on the tensor description of Younis et al. (2005) and implemented in OpenFOAM. Its validation for Poiseuille flow at different Reynolds numbers shows very good agreement with reference data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Communications in Heat and Mass Transfer - Volume 95, July 2018, Pages 74-79
Journal: International Communications in Heat and Mass Transfer - Volume 95, July 2018, Pages 74-79
نویسندگان
C. Sotgiu, B. Weigand, K. Semmler,