کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7061036 1458980 2018 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development of a thermal Reduced Order Model with explicit dependence on viscosity for a generalized Newtonian fluid
ترجمه فارسی عنوان
توسعه مدل نظم گرمای حرارتی با وابستگی صریح به ویسکوزیته برای یک مایع نیوتونی تعمیم یافته
کلمات کلیدی
مایع شبه پلاستیک الاستومر، طرح گالرکین، روش شناسایی مودال، بهینه سازی، حسگر نفوذی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
چکیده انگلیسی
This work falls within the general framework of melted polymers flows characterization. It deals with the development of a thermo-rheological Reduced Order Model (ROM) which could be used in future works for on-line estimation of viscosity from temperature measurements in the flow, especially in high shear zones. A steady incompressible flow of a pseudo-plastic fluid in a circular runner is considered. The dynamic viscosity is thus described by a shear rate power law defined by consistency index K and flow behavior index n. An approach is developed for building a ROM able to compute a radial temperature profile at the channel outlet for any (K, n) couple in a predefined range. Assuming the temperature field approximation on a reduced set of m space functions, the general form of the ROM is obtained through a Galerkin projection of the energy equation. The ROM constitutive parameters are then identified through an optimization procedure using temperature data for a set of (K, n) couples in the construction ranges Kϵ[5000;20,000] and nϵ[0.3;0.6]. These data are computed by a Finite Elements reference model experimentally validated on an instrumented apparatus. A series of ROMs of order m = 1 to 5 is identified and then tested for a second set of (K, n) couples. The order 5 ROM is able to reproduce the temperature profile computed by the reference model with a r.m.s. error of about 10−2 °C. The temperature profile computed with ROMs is also compared to the profile measured for a real flow.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Non-Newtonian Fluid Mechanics - Volume 260, October 2018, Pages 26-39
نویسندگان
, , , , ,