کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7061217 | 1459009 | 2016 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Experimental investigation of the impact of elastic turbulence on heat transfer in a serpentine channel
ترجمه فارسی عنوان
بررسی تجربی اثر تاخیر الاستیک در انتقال حرارت در یک کانال سرپانتین
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
چکیده انگلیسی
The characteristics of convective heat transfer and fluid flow within a square cross-section serpentine channel are experimentally studied for two groups of polymeric viscoelastic fluids, shear-thinning and constant-viscosity Boger solutions. The elastic turbulence can be created by the non-linear interaction between elastic stresses generated within the flowing high-molecular-weight polymer solutions and the streamline curvature. In order to confirm elastic turbulence in this geometry, pressure drop across the serpentine channel was measured. The findings indicate that the measurements of non-dimensional pressure-drop increase approximately from 1.48 to 4.82 for viscoelastic solutions compared with the Newtonian fluid over a range of Weissenberg number from 4 to 211. The convective heat transfer enhances due to elastic turbulence by up to 200% for low polymer concentration (dilute) solutions and reaches up to 380% for higher polymer concentration (semi-dilute) solutions under creeping-flow conditions in comparison to that achieved by the equivalent Newtonian fluid flow at low Graetz number (up to 14.6). We propose a modified Weissenberg number which is able to approximately collapse the mean Nusselt number data for each solution group.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Non-Newtonian Fluid Mechanics - Volume 231, May 2016, Pages 68-78
Journal: Journal of Non-Newtonian Fluid Mechanics - Volume 231, May 2016, Pages 68-78
نویسندگان
Waleed M. Abed, Richard D. Whalley, David J.C. Dennis, Robert J. Poole,