کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7116020 | 1461175 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An improved incipient fault detection method based on Kullback-Leibler divergence
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents an improved incipient fault detection method based on Kullback-Leibler (KL) divergence under multivariate statistical analysis frame. Different from the traditional multivariate fault detection methods, this methodology can detect slight anomalous behaviors by comparing the online probability density function (PDF) online with the reference PDF obtained from large scale off-line data set. In the principal and residual subspaces obtained via PCA, a symmetric evaluation function is defined for both single variate and multivariate cases. The uniform form of probability distribution and fault detection thresholds associated with all eigenvalues are given. In addition, the robust performance is analyzed with respect to a wide range of Signal to Noise Ratio (SNR). Case studies are conducted with three types of incipient faults on a numerical example; combining with two nonlinear projections, the proposed scheme is successfully used for incipient fault detection in non-Gaussian electrical drive system. The results can demonstrate the superiority of the proposed method than several other methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISA Transactions - Volume 79, August 2018, Pages 127-136
Journal: ISA Transactions - Volume 79, August 2018, Pages 127-136
نویسندگان
Hongtian Chen, Bin Jiang, Ningyun Lu,