کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7120880 | 1461462 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based shape memory alloy using MOGA-II
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Shape memory alloys (SMAs) have received significant attention especially in biomedical and aerospace industries owing to their unique properties. However, they are difficult-to-machine materials. Electrical discharge machining (EDM) can be used to machine difficult to cut materials with good accuracy. However, several challenges and issues related with the process at micro-level continue to exist. One of the aforementioned issues is that the micro-EDM (µEDM) process is extremely slow when compared to other non-conventional processes, such as laser machining, although it offers several other benefits. The study considers the analysis and optimization of µEDM by using a multi-objective genetic algorithm (MOGA-II). Drilling of micro-holes is performed by using a tabletop electrical discharge machine. Nickel-Titanium (Ni-Ti) based SMA (a difficult to cut advance material) is used as a specimen. The objective involves determining optimal machining parameters to obtain better material removal rate with good surface finish. The results of the study indicate that MOGA-II is an efficient tool to optimize input parameters. Optimum results are obtained with tungsten electrode at low to moderate capacitance values and low discharge voltage. Conversely, brass electrode yields high MRR at the expense of tool wear and micro-holes quality.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 125, September 2018, Pages 336-349
Journal: Measurement - Volume 125, September 2018, Pages 336-349
نویسندگان
Mustufa H. Abidi, Abdulrahman M. Al-Ahmari, Usama Umer, Mohammed Sarvar Rasheed,