کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7120981 | 1461464 | 2018 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A hybrid method for fault location estimation in a fixed series compensated lines
ترجمه فارسی عنوان
یک روش ترکیبی برای تخمین موقعیت گسل در خطوط جبران ثابت سری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
This paper proposes a fault distance estimation scheme for fixed series capacitor compensated parallel transmission lines using discrete wavelet transform and decision tree regression. The purpose of the data mining based scheme is to avoid the complicated equation based methods that have been suggested by researchers to overcome the drawbacks of conventional fault location scheme. Although decision tree has inherent advantage over other methods like artificial neural network and support vector machines to work with large data sets, it has not been used in fault location estimation in series compensated (SC) transmission line so far. Decision tree is chosen to locate the faults because of its ability to work with large data set and high accuracy in associating the fault pattern to the fault distance using regression analysis. The discrete wavelet transform processed signals makes the decision process of decision tree regression easy by providing appropriate features. The proposed method is evaluated with variation of fault location, fault type, pre-fault load angle, location of series capacitor, degree of series compensation, fault inception angle, line parameters, inter-circuit faults and fault resistance. The test result of decision tree regression based location estimation scheme ensures that, it can estimate the fault distance accurately.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 123, July 2018, Pages 8-18
Journal: Measurement - Volume 123, July 2018, Pages 8-18
نویسندگان
Aleena Swetapadma, Anamika Yadav,