کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7123121 | 1461495 | 2016 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An online two-stage adaptive algorithm for strain profile estimation from noisy and abruptly changing BOTDR data and application to underground mines
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Strain measurement using BOTDR (Brillouin Optical Time-Domain Reflectometry) is nowadays a standard tool for structural health monitoring. In this context, weak data quality and noise, usually owed to defective fiber installation, hinders discriminating actual level shifts from outliers and might entail a biased risk assessment. We propose a novel online adaptive algorithm for strain profile estimation in strain time series with abrupt and gradual changes and missing data. It relies on a convolution filter in Brillouin spectrum domain and a smoothing technique in time domain. In simulated data, the convolution filter is shown to reduce strain measurement uncertainty by up to 8 times the strain resolution. The two-stage method is illustrated with systematic outliers removal from real data of a Chilean copper mine and the improvement of the associated gain spectrum quality by up to 18Â dB in SNR terms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 92, October 2016, Pages 340-351
Journal: Measurement - Volume 92, October 2016, Pages 340-351
نویسندگان
G. Soto, J. Fontbona, R. Cortez, L. Mujica,