کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7123647 | 1461497 | 2016 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Tool condition classification in turning process using hidden Markov model based on texture analysis of machined surface images
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Tool condition monitoring has found its importance to meet the requirement of production quality in industries. Machined surface texture is directly affected by the extent of tool wear. Hence, by analyzing the machined surface images, the information about the cutting tool condition can be obtained. This paper presents a novel technique for tool wear classification using hidden Markov model (HMM) technique applied on the features extracted from the gray level co-occurrence matrix (GLCM) of machined surface images. The tool conditions are classified into sharp, semi-dull and dull tool states. The proposed method is found to be cost effective and reliable for on-machine tool classification of cutting tool wear with an average of 95% accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 90, August 2016, Pages 500-509
Journal: Measurement - Volume 90, August 2016, Pages 500-509
نویسندگان
Nagaraj N. Bhat, Samik Dutta, Surjya K. Pal, Srikanta Pal,