کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7124963 | 1461529 | 2014 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Transducer invariant multi-class fault classification in a rotor-bearing system using support vector machines
ترجمه فارسی عنوان
طبقه بندی خطای طبقه چند طبقه ای غیر محرک مبدل در یک سیستم روتور تحمل با استفاده از ماشین های بردار پشتیبانی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
یاتاقان، عدم تعادل، طبقه بندی گسل، سرعت، لرزش،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
Faults in a rotor-bearing system due to bearings and unbalance have been classified using support vector machines (SVMs). Vibration signals on a rotor-bearing system were measured simultaneously at five different rotating speeds using seven transducers. The most sensitive feature of the vibration signals has been determined using compensation distance evaluation technique. Multi-class SVMs classification algorithm was then implemented for classification of the faults by considering SVMs created by the possible combinations of the most two sensitive features for each type of fault. By using optimal SVM parameters, the effective location of transducer among seven transducers for best classification of the faults has been investigated and found that any transducer provides a classification of 75% or better and this classification rate increases when more transducers are considered. This paper provides a robust SVM based technique using only time domain data without any additional preprocessing for classifying bearing and unbalance faults.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 58, December 2014, Pages 363-374
Journal: Measurement - Volume 58, December 2014, Pages 363-374
نویسندگان
S. Fatima, B. Guduri, A.R. Mohanty, V.N.A. Naikan,