کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7125127 | 1461532 | 2014 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
DDEUDSC: A Dynamic Distance Estimation using Uncertain Data Stream Clustering in mobile wireless sensor networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In RSSI (Received Signal Strength Indicator)-based communication distance estimation of mobile wireless sensor network localization, RSSI is assumed to exponential attenuation with increment of communication distance in ideal radio propagation models, which is invalid due to the uncertainty of RSSI data in real communication environment, resulting in considerable error of communication distance estimation. Moreover, dynamic distance estimation demands a high efficiency of computation for the continual generation of RSSI data stream in the mobile node. This paper develops a new dynamic communication distance estimation method using uncertain interval data stream clustering, named as DDEUDSC (Dynamic Distance Estimation method using Uncertain Data Stream Clustering). First, statistical information of RSSI data is used to represent the RSSI-D mapping relationship in terms of interval data. Then we consider the data pattern composed of some consecutive cluster centers, and apply it in our uncertain RSSI data stream clustering algorithm to estimate the dynamic communication distance. Finally, RSSI data streams in three typical communication environments are conducted for experiments. The experimental results show the proposed method is an effective way to improve RSSI-D estimation precision in RSSI data stream with uncertainty and dynamics characteristic.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 55, September 2014, Pages 423-433
Journal: Measurement - Volume 55, September 2014, Pages 423-433
نویسندگان
Qinghua Luo, Xiaozhen Yan, Junbao Li, Yu Peng,