کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7129677 1461598 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
[INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی برق و الکترونیک
پیش نمایش صفحه اول مقاله
[INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain
چکیده انگلیسی
We report a highly sensitive Localized surface plasmon resonance (LSPR) based photonic crystal fiber (PCF) sensor by embedding an array of gold nanospheres into the first layer of air-holes of PCF. We present a comprehensive analysis on the basis of progressive variation of refractive indices of analytes as well as sizes of the nanospheres. In the proposed sensing scheme, refractive indices of the analytes have been changed from 1 to 1.41(RIU), accompanied by alteration of the sizes of nanospheres ranging 40-70 nm. The entire study has been executed in the context of different material based PCFs (viz. phosphate and crown) and the corresponding results have been analyzed and compared. We observe a declining trend in modal loss in each set of PCFs with increment of RI of the analyte. Lower loss has been observed in case of crown based PCF. The sensor shows highest sensitivity ∼27,000 nm/RIU for crown based PCF for nanosphere of 70 nm with average wavelength interrogation sensitivity ∼5333.53 nm/RIU. In case of phosphate based PCF, highest sensitivity is found to be ∼18,000 nm/RIU with an average interrogation sensitivity ∼4555.56 nm/RIU for 40 nm of Au nanosphere. Moreover, the additional sensing parameters have been observed to highlight the better design of the modelled LSPR based photonic crystal fiber sensor. As such, the resolution (R), limit of detection (LOD) and sensitivity (S) of the proposed sensor in each case (viz. phosphate and crown PCF) have been discussed by using wavelength interrogation technique. The proposed study provides a basis for detailed investigation of LSPR phenomenon for PCF utilizing noble metal nanospheres (AuNPs).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optics & Laser Technology - Volume 101, May 2018, Pages 379-387
نویسندگان
, ,