کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7133025 | 1461741 | 2014 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Novel image fusion method based on adaptive pulse coupled neural network and discrete multi-parameter fractional random transform
ترجمه فارسی عنوان
روش تلفیقی تصویر رمان با استفاده از شبکه عصبی پالسی تطبیقی و تبدیل تصادفی کسری چند پارامتر گسسته
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ترکیب تصویر، تبدیل تصادفی کسر جزئی چند پارامتر گسسته، پالس شبکه عصبی مرکب، انحراف استاندارد محلی، تصویربرداری تصویر جرقه زنی،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی برق و الکترونیک
چکیده انگلیسی
In this paper, we first propose the discrete multi-parameter fractional random transform (DMPFRNT), which can make the spectrum distributed randomly and uniformly. Then we introduce this new spectrum transform into the image fusion field and present a new approach for the remote sensing image fusion, which utilizes both adaptive pulse coupled neural network (PCNN) and the discrete multi-parameter fractional random transform in order to meet the requirements of both high spatial resolution and low spectral distortion. In the proposed scheme, the multi-spectral (MS) and panchromatic (Pan) images are converted into the discrete multi-parameter fractional random transform domains, respectively. In DMPFRNT spectrum domain, high amplitude spectrum (HAS) and low amplitude spectrum (LAS) components carry different informations of original images. We take full advantage of the synchronization pulse issuance characteristics of PCNN to extract the HAS and LAS components properly, and give us the PCNN ignition mapping images which can be used to determine the fusion parameters. In the fusion process, local standard deviation of the amplitude spectrum is chosen as the link strength of pulse coupled neural network. Numerical simulations are performed to demonstrate that the proposed method is more reliable and superior than several existing methods based on Hue Saturation Intensity representation, Principal Component Analysis, the discrete fractional random transform etc.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optics and Lasers in Engineering - Volume 52, January 2014, Pages 91-98
Journal: Optics and Lasers in Engineering - Volume 52, January 2014, Pages 91-98
نویسندگان
Jun Lang, Zhengchao Hao,