کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7151850 | 1462330 | 2014 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Recursive identification of time-varying systems: Self-tuning and matrix RLS algorithms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a new parallel adaptive self-tuning recursive least squares (RLS) algorithm for time-varying system identification is first developed. Regularization of the estimation covariance matrix is included to mitigate the effect of non-persisting excitation. The desirable forgetting factor can be self-tuning estimated in both non-regularization and regularization cases. We then propose a new matrix forgetting factor RLS algorithm as an extension of the conventional RLS algorithm and derive the optimal matrix forgetting factor under some reasonable assumptions. Simulations are given which demonstrate that the performance of the proposed self-tuning and matrix RLS algorithms compare favorably with two improved RLS algorithms recently proposed in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Systems & Control Letters - Volume 66, April 2014, Pages 104-110
Journal: Systems & Control Letters - Volume 66, April 2014, Pages 104-110
نویسندگان
Jianshu Li, Yuanjin Zheng, Zhiping Lin,