کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7156265 | 1462644 | 2018 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Unsteady three-dimensional boundary element method for self-propelled bio-inspired locomotion
ترجمه فارسی عنوان
روش عنصر مرزی سه بعدی بی نظیر برای حرکت به سوی حرکت بی روح به خودی خود
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
نیروی محرکه بیوژنتیک، روش عنصر مرزی، روش پانل، شنا کردن خودی جریان ناپایدار، دینامیک گرداب،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
چکیده انگلیسی
An unsteady three-dimensional boundary element method is developed to provide fast calculations of biological and bio-inspired self-propelled locomotion. The approach uniquely combines an unsteady three-dimensional boundary element method, a boundary layer solver and self-propelled equations of motion. This novel implementation allows for the self-propelled speed, power, efficiency and economy to be accurately calculated. A Dirichlet formulation is used with a combination of constant strength source and doublet elements to represent a deforming body with a nonlinearly deforming wake. The wake elements are desingularized to numerically stabilize the evolution of the wake vorticity. Weak coupling is used in solving the equations of motion and in the boundary layer solution. The boundary layer solver models both laminar and turbulent behavior along the deforming body to estimate the total skin friction drag acting on the body. The results from the method are validated with analytical solutions, computations and experiments. Finally, a bio-inspired self-propelled undulatory fin is modeled. The computed self-propelled speeds and wake structures agree well with previous experiments. The computations go beyond the experiments to gain further insight into the propulsive efficiency for self-propelled undulating fins. It is found that the undulating fin produces a time-averaged momentum jet at 76% of the span that accelerates fluid in the streamwise direction and in turn generates thrust. Additionally, it is discovered that high amplitude motions suppress the formation of a bifurcating momentum jet and instead form a single core jet. Consequently, this maximizes the amount of streamwise momentum compared to the amount of wasted lateral momentum and leads to a propulsive efficiency of 78% during self-propelled locomotion.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Fluids - Volume 167, 15 May 2018, Pages 324-340
Journal: Computers & Fluids - Volume 167, 15 May 2018, Pages 324-340
نویسندگان
K.W. Moored,