کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7158686 | 1462798 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China
ترجمه فارسی عنوان
مقایسه ماشین بردار پشتیبانی و تقویت گرادیان شدید برای پیش بینی تابش خورشیدی روزانه جهانی با استفاده از دما و بارش در هوای مناطق مرطوب مرطوب: مطالعه موردی در چین
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تابش خورشیدی جهانی، پشتیبانی ماشین بردار تقویت شدید گریدنت، درجه حرارت، بارش،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
The knowledge of global solar radiation (H) is a prerequisite for the use of renewable solar energy, but H measurements are always not available due to high costs and technical complexities. The present study proposes two machine learning algorithms, i.e. Support Vector Machine (SVM) and a novel simple tree-based ensemble method named Extreme Gradient Boosting (XGBoost), for accurate prediction of daily H using limited meteorological data. Daily H, maximum and minimum air temperatures (Tmax and Tmin), transformed precipitation (Pt, 1 for rainfallâ¯>â¯0 and 0 for rainfallâ¯=â¯0) and extra-terrestrial solar radiation (H0) during 1966-2000 and 2001-2015 from three radiation stations in humid subtropical China were used to train and test the models, respectively. Two combinations of input parameters, i.e. (i) only Tmax, Tmin and Ra, and (ii) complete data were considered for simulations. The proposed machine learning models were also compared with four well-known empirical models to evaluate their performances. The results suggest that the SVM and XGBoost models outperformed the selected empirical models. The performance of the machine learning models was improved by 5.9-12.2% for training phase and by 8.0-11.5% for testing phase in terms of RMSE when information of precipitation was further included. Compared with the SVM model, the XGBoost model generally showed better performance for training phase, and slightly weaker but comparable performance for testing phase in terms of accuracy. However, the XGBoost model was more stable with average increase of 6.3% in RMSE, compared to 10.5% for the SVM algorithm. Also, the XGBoost model (3.02â¯s and 0.05â¯s for training and testing phase, respectively) showed much higher computation speed than the SVM model (27.48â¯s and 4.13â¯s for training and testing phase, respectively). By jointly considering the prediction accuracy, model stability and computational efficiency, the XGBoost model is highly recommended to estimate daily H using commonly available temperature and precipitation data with excellent performance in humid subtropical climates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Conversion and Management - Volume 164, 15 May 2018, Pages 102-111
Journal: Energy Conversion and Management - Volume 164, 15 May 2018, Pages 102-111
نویسندگان
Junliang Fan, Xiukang Wang, Lifeng Wu, Hanmi Zhou, Fucang Zhang, Xiang Yu, Xianghui Lu, Youzhen Xiang,