کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7166905 | 1462888 | 2013 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel machine learning approach for estimation of electricity demand: An empirical evidence from Thailand
ترجمه فارسی عنوان
روش جدید یادگیری ماشین برای برآورد تقاضای برق: شواهد تجربی از تایلند
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تقاضای برق، روش ترکیبی، برنامه نویسی ژنتیک، شبیه سازی شده، پیش بینی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
This study proposes an innovative hybrid approach for the estimation of the long-term electricity demand. A new prediction equation was developed for the electricity demand using an integrated search method of genetic programming and simulated annealing, called GSA. The annual electricity demand was formulated in terms of population, gross domestic product (GDP), stock index, and total revenue from exporting industrial products of the same year. A comprehensive database containing total electricity demand in Thailand from 1986 to 2009 was used to develop the model. The generalization of the model was verified using a separate testing data. A sensitivity analysis was conducted to investigate the contribution of the parameters affecting the electricity demand. The GSA model provides accurate predictions of the electricity demand. Furthermore, the proposed model outperforms a regression and artificial neural network-based models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Conversion and Management - Volume 74, October 2013, Pages 548-555
Journal: Energy Conversion and Management - Volume 74, October 2013, Pages 548-555
نویسندگان
Elham Sadat Mostafavi, Seyyed Iman Mostafavi, Arefeh Jaafari, Fariba Hosseinpour,