کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7195364 | 1468218 | 2016 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter
ترجمه فارسی عنوان
باقی ماندن پیش بینی عمر مفید بر اساس سیگنال های مانیتورینگ وضعیت پر سر و صدا با استفاده از فیلتر کلمن محدود
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
عمر مفید دیگر، سیگنال های نظارت وضعیت فیلتر کالمن محصور شده،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
چکیده انگلیسی
In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of condition monitoring (CM) signals. Therefore, it is inevitable that the RUL prediction accuracy depends on the amount of random noise in CM signals. When signals are contaminated by a large amount of random noise, RUL prediction even becomes infeasible in some cases. To mitigate this issue, a robust RUL prediction method based on constrained Kalman filter is proposed. The proposed method models the CM signals subject to a set of inequality constraints so that satisfactory prediction accuracy can be achieved regardless of the noise level of signal evolution. The advantageous features of the proposed RUL prediction method is demonstrated by both numerical study and case study with real world data from automotive lead-acid batteries.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reliability Engineering & System Safety - Volume 152, August 2016, Pages 38-50
Journal: Reliability Engineering & System Safety - Volume 152, August 2016, Pages 38-50
نویسندگان
Junbo Son, Shiyu Zhou, Chaitanya Sankavaram, Xinyu Du, Yilu Zhang,