کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7222196 | 1470395 | 2017 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In a series of publications of the second author, including some with coauthors, globally strictly convex Tikhonov-like functionals were constructed for some nonlinear ill-posed problems. The main element of such a functional is the presence of the Carleman Weight Function. Compared with previous publications, the main novelty of this paper is that the existence of the regularized solution (i.e. the minimizer) is proved rather than assumed. The method works for both ill-posed Cauchy problems for some quasilinear PDEs of the second order and for some Coefficient Inverse Problems. However, to simplify the presentation, we focus here only on ill-posed Cauchy problems. Along with the theory, numerical results are presented for the case of a 1-D quasilinear parabolic PDE with the lateral Cauchy data given on one edge of the interval (0, 1).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 34, April 2017, Pages 201-224
Journal: Nonlinear Analysis: Real World Applications - Volume 34, April 2017, Pages 201-224
نویسندگان
Anatoly B. Bakushinskii, Michael V. Klibanov, Nikolaj A. Koshev,