کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7222336 1470398 2016 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gevrey analyticity of solutions to the 3D nematic liquid crystal flows in critical Besov space
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Gevrey analyticity of solutions to the 3D nematic liquid crystal flows in critical Besov space
چکیده انگلیسی
We show that the solution to the Cauchy problem of the 3D nematic liquid crystal flows, with initial data belonging to a critical Besov space, belongs to a Gevrey class. More precisely, it is proved that for any (u0,d0−d¯0)∈Ḃp,13p−1(R3)×Ḃq,13q(R3) with some suitable conditions imposed on p,q∈(1,∞), there exists T∗>0 depending only on initial data, such that the nematic liquid crystal flows admit a unique solution (u,d) on R3×(0,T∗), and satisfies ‖etΛ1u(t)‖L˜T∗∞(Ḃp,13p−1)∩L˜T∗1(Ḃp,13p+1)+‖etΛ1(d(t)−d¯0)‖L˜T∗∞(Ḃq,13q)∩L˜T∗1(Ḃq,13q+2)<∞. Here, d¯0∈S2 is a constant unit vector, and Λ1 is the Fourier multiplier whose symbol is given by |ξ|1=|ξ1|+|ξ2|+|ξ3|. Moreover, if the initial data is sufficiently small, then T∗=∞. As a consequence of the results, decay estimates of higher-order derivatives of solutions in Besov spaces are deduced.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 31, October 2016, Pages 431-451
نویسندگان
,