کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7223687 1470562 2018 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A noise-tolerant Z-type neural network for time-dependent pseudoinverse matrices
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
A noise-tolerant Z-type neural network for time-dependent pseudoinverse matrices
چکیده انگلیسی
Differing from the well-known gradient neural network (GNN) and the conventional Z-type neural network (CZNN), in this paper, we first put forward and generalize the improved Z-type neural network, termed noise-tolerant Z-type neural network (NTZNN), to compute the real-time-dependent matrix pseudoinverse under noisy environments. Theoretical analyses substantiate that the presented NTZNN has the capability of globally exponential convergence, and can resist various noises simultaneously. For comparative purposes, the gradient neural network and the conventional Z-type neural network are also presented and analyzed to handle the same time-dependent problem. Finally, numerical examples and results further substantiate the superior performance of the proposed NTZNN for computing the real-time-dependent matrix pseudoinverse in the situation of various types of noise, as comparing with the GNN and CZNN.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optik - Volume 165, July 2018, Pages 16-28
نویسندگان
, , , ,