کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7228069 | 1470623 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Computing cross fields A PDE approach based on the Ginzburg-Landau theory
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Cross fields are auxiliary in the generation of quadrangular meshes. A method to generate cross fields on surface manifolds is presented in this paper. Algebraic topology constraints on quadrangular meshes are first discussed. The duality between quadrangular meshes and cross fields is then outlined, and a generalization to cross fields of the Poincaré-Hopf theorem is proposed, which highlights some fundamental and important topological constraints on cross fields. A finite element formulation for the computation of cross fields is then presented, which is based on Ginzburg-Landau equations and makes use of edge-based Crouzeix-Raviart interpolation functions. It is first presented in the planar case, and then extended to a general surface manifold. Finally, application examples are solved and discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Engineering - Volume 203, 2017, Pages 219-231
Journal: Procedia Engineering - Volume 203, 2017, Pages 219-231
نویسندگان
Pierre-Alexandre Beaufort, Jonathan Lambrechts, François Henrotte, Christophe Geuzaine, Jean-François Remacle,