کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7237015 1471099 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Explosive lower limb extension mechanics: An on-land vs. in-water exploratory comparison
ترجمه فارسی عنوان
مکانیک توسعه انقباضی اندام تحتانی: مقایسه اکتشافی در سطح زمین و درون آب
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
چکیده انگلیسی
During a horizontal underwater push-off, performance is strongly limited by the presence of water, inducing resistances due to its dense and viscous nature. At the same time, aquatic environments offer a support to the swimmer with the hydrostatic buoyancy counteracting the effects of gravity. Squat jump is a vertical terrestrial push-off with a maximal lower limb extension limited by the gravity force, which attracts the body to the ground. Following this observation, we characterized the effects of environment (water vs. air) on the mechanical characteristics of the leg push-off. Underwater horizontal wall push-off and vertical on-land squat jumps of two local swimmers were evaluated with force plates, synchronized with a lateral camera. To better understand the resistances of the aquatic movement, a quasi-steady Computational Fluid Dynamics (CFD) analysis was performed. The force-, velocity- and power-time curves presented similarities in both environments corresponding to a proximo-distal joints organization. In water, swimmers developed a three-step explosive rise of force, which the first one mainly related to the initiation of body movement. Drag increase, which was observed from the beginning to the end of the push-off, related to the continuous increase of body velocity with high values of drag coefficient (CD) and frontal areas before take-off. Specifically, with velocity, frontal area was the main drag component to explain inter-individual differences, suggesting that the streamlined position of the lower limbs is decisive to perform an efficient push-off. This study motivates future CFD simulations under more ecological, unsteady conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomechanics - Volume 65, 8 December 2017, Pages 106-114
نویسندگان
, , , , , ,