کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
729994 1461510 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An improved LLE algorithm based on iterative shrinkage for machinery fault diagnosis
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
An improved LLE algorithm based on iterative shrinkage for machinery fault diagnosis
چکیده انگلیسی


• ISLLE is proposed with the aid of iterative shrinkage technology and LLE.
• A surrogate function is introduced to simplify the computational complexity of ISLLE.
• ISLLE implements feature extraction twice.
• Based on ISLLE a new fault diagnosis method is developed.

Local linear embedding (LLE) algorithm is widely utilized to feature extraction for fault diagnosis, but the diagnosis result is sensitive to reconstruction weight W of LLE. To make W more significant and robust, in this paper, ISLLE algorithm is proposed with the aid of iterative shrinkage technology and LLE algorithm. In ISLLE algorithm, a surrogate function is introduced, upon which the high-dimensional optimization problem can be decoupled into a set of one-dimensional equations, then W can be easily computed by iterative shrinkage method. In each iteration, the small and negative weight coefficients are eliminated, while the large ones are shrunk, which can be regarded as feature extraction and noise reduction. Hence, the signals processed by ISLLE are more beneficial to diagnosis. Three real datasets are used to examine the proposed method. The experimental results demonstrate that the proposed method is valid, and the performance of ISLLE outperforms that of the original LLE.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 77, January 2016, Pages 246–256
نویسندگان
, , , ,