کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
731550 | 893071 | 2009 | 14 صفحه PDF | دانلود رایگان |

End-point positioning accuracy and fast settling time are essential in the motion system aimed at semiconductor packaging applications. In this paper, a novel robust learning control method for a direct-drive planar parallel manipulator is presented. A frequency-domain system identification approach is used to identify the high frequency dynamic of the manipulator. A robust control design method is employed to design a stable, fast tracking response feedback controller with less sensitivity to high frequency disturbance and the control parameters are determined using genetic algorithm. A Fourier-series-based iterative learning controller is designed and used on the feedforward path of the controller to further improve the settling time by reducing the dynamic tracking error of the manipulator. Experimental results demonstrate that the planar parallel manipulator has significant improvements on motion performance in terms of positioning accuracy, settling time and stability when compared with traditional XY-stages. This shows that the proposed manipulator provides a superior alternative to XY-motion stages for high precision positioning.
Journal: Mechatronics - Volume 19, Issue 1, February 2009, Pages 42–55