کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
733899 893378 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Application of an LM-neural network for establishing a prediction system of quality characteristics for the LGP manufactured by CO2 laser
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی برق و الکترونیک
پیش نمایش صفحه اول مقاله
Application of an LM-neural network for establishing a prediction system of quality characteristics for the LGP manufactured by CO2 laser
چکیده انگلیسی

The light guide plate (LGP) is a part of a backlight module, which evenly spreads light sources in a liquid crystal display (LCD) to eliminate total reflection. Light is transmitted into the LGP, where it is reflected, scattered, and refracted due to the microstructure, which allows light to uniformly enter the panel. Therefore, the design of an LGP micro-structure and processing mode is important for light transmission in an LCD. This study used a CO2 laser to fabricate a polymethyl methacrylate (PMMA) LGP, applied a Taguchi orthogonal array to set up the experiment, and utilized the data to establish a prediction system. Backpropagation (BP) neural network and the Levenberg–Marquardt (LM) algorithm were integrated to establish a prediction system for LGP processing by CO2 laser, with the controlling factor as the input parameter, and quality characteristics as the output parameters. After learning and training the network, the prediction error rate of the system was controlled within 5%, demonstrating good predictive validity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optics & Laser Technology - Volume 43, Issue 3, April 2011, Pages 529–536
نویسندگان
, , , ,