کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7408516 1481446 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage
موضوعات مرتبط
علوم انسانی و اجتماعی مدیریت، کسب و کار و حسابداری کسب و کار و مدیریت بین المللی
پیش نمایش صفحه اول مقاله
Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage
چکیده انگلیسی
We develop a novel Bayesian doubly adaptive elastic-net Lasso (DAELasso) approach for VAR shrinkage. DAELasso achieves variable selection and coefficient shrinkage in a data-based manner. It deals constructively with explanatory variables which tend to be highly collinear by encouraging the grouping effect. In addition, it also allows for different degrees of shrinkage for different coefficients. Rewriting the multivariate Laplace distribution as a scale mixture, we establish closed-form conditional posteriors that can be drawn from a Gibbs sampler. An empirical analysis shows that the forecast results produced by DAELasso and its variants are comparable to those from other popular Bayesian methods, which provides further evidence that the forecast performances of large and medium sized Bayesian VARs are relatively robust to prior choices, and, in practice, simple Minnesota types of priors can be more attractive than their complex and well-designed alternatives.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Forecasting - Volume 30, Issue 1, January–March 2014, Pages 1-11
نویسندگان
,