کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7422264 | 1482637 | 2015 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم انسانی و اجتماعی
مدیریت، کسب و کار و حسابداری
استراتژی و مدیریت استراتژیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper introduces a new indicator for tourism demand forecasting constructed from Google Trends' search query time series data. The indicator is based on a composite search for “hotels and flights” from three main source countries to five popular tourist destinations in the Caribbean. We uniquely test the forecasting performance of the indicator using Autoregressive Mixed-Data Sampling (AR-MIDAS) models relative to the Seasonal Autoregressive Integrated Moving Average (SARIMA) and autoregressive (AR) approach. The twelve month forecasts reveal that AR-MIDAS outperformed the alternatives in most of the out-of-sample forecasting experiments. This suggests that Google Trends information offers significant benefits to forecasters, particularly in tourism. Hence, policymakers and business practitioners especially in the Caribbean can take advantage of the forecasting capability of Google search data for their planning purposes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Tourism Management - Volume 46, February 2015, Pages 454-464
Journal: Tourism Management - Volume 46, February 2015, Pages 454-464
نویسندگان
Prosper F. Bangwayo-Skeete, Ryan W. Skeete,