کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
742972 894337 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Microfabrication and chemoresistive characteristics of SBA-15-templated mesoporous carbon gas sensors with CMOS compatibility
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Microfabrication and chemoresistive characteristics of SBA-15-templated mesoporous carbon gas sensors with CMOS compatibility
چکیده انگلیسی

We describe a new class of silicon-based gas sensors that employ gas-sensitive films made of hexagonally ordered mesoporous carbon nanopowders. The mesoporous carbon powders (MCPs) are replicated by the SBA-15 silica template and immobilized between interdigitated Cr electrodes on a 300 μm × 300 μm active area using an alternating current dielectrophoresis (DEP) process at room temperature. The silicon sensor platform comprises Cr microheaters embedded in a dielectric thin membrane formed by conventional back-etching techniques with microelectromechanical systems (MEMS) manufacturability and complementary metal oxide semiconductor (CMOS) compatibility. It is observed that MCPs can be satisfactorily aligned along electric fields and accumulated to the electrode region. Comprehensive investigations are carried out to evaluate the gas-sensitive characteristics of MCP nanoparticles to gases such as O2 and NH3 for the first time. Experimental results disclose that the amorphous carbon powders are chemoresistively sensitive to oxidising and reducing gas species, and demonstrate distinct resistance change with gas concentrations in ppm-level. Fast response times estimated as ∼100 s for O2 and ∼90 s for NH3 and reproducible response behaviour are observed. The measured characteristics reported in this paper make MCPs a competitive alternative to carbon nanotubes (CNTs) because of their superior porosity, high specific surface area and cost-effective immobilization process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Sensors and Actuators B: Chemical - Volume 143, Issue 2, 7 January 2010, Pages 500–507
نویسندگان
, ,