کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7446239 | 1483946 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Subjective and objective quality assessment of degraded document images
ترجمه فارسی عنوان
ارزیابی کیفیت ذهنی و هدفمند تصاویر سند تخریب شده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی تئوریک و عملی
چکیده انگلیسی
The huge amount of degraded documents stored in libraries and archives around the world needs automatic procedures of enhancement, classification, transliteration, etc. While high-quality images of these documents are in general easy to be captured, the amount of damage these documents contain before imaging is unknown. It is highly desirable to measure the severity of degradation that each document image contains. The degradation assessment can be used in tuning parameters of processing algorithms, selecting the proper algorithm, finding damaged or exceptional documents, among other applications. In this paper, the first dataset of degraded document images along with the human opinion scores for each document image is introduced in order to evaluate the image quality assessment metrics on historical document images. In this research, human judgments on the overall quality of the document image are used instead of the previously used OCR performance. Also, we propose an objective no reference quality metric based on the statistics of the mean subtracted contrast normalized (MSCN) coefficients computed from segmented layers of each document image. The segmentation into four layers of foreground and background is done on the basis of an analysis of the log-Gabor filters. This segmentation is based on the assumption that the sensitivity of the human visual system (HVS) is different at the locations of text and non-text. Experimental results show that the proposed metric has comparable or better performance than the state-of-the-art metrics, while it has a moderate complexity. The developed dataset as well as the Matlab source code of the proposed metric is available at http://www.synchromedia.ca/system/files/VDIQA.zip.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Cultural Heritage - Volume 30, MarchâApril 2018, Pages 199-209
Journal: Journal of Cultural Heritage - Volume 30, MarchâApril 2018, Pages 199-209
نویسندگان
Atena Shahkolaei, Hossein Ziaei Nafchi, Somaya Al-Maadeed, Mohamed Cheriet,