کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
745559 | 894423 | 2009 | 7 صفحه PDF | دانلود رایگان |

Tin dioxide nanoparticles synthesized by low temperature hydrothermal route, incorporated with Pd have shown to be very efficient in the sensing of hydrogen gas at very low temperatures. The morphology of the synthesized nanoparticles was determined by XRD and TEM. The gas sensing studies optimized the operating temperature and composition of Pd to obtain a highly efficient material for hydrogen sensing. 0.5 wt% Pd in SnO2 showed a fast response (less than 10 s) to hydrogen at an operating temperature of 50 °C. The present paper details an insight into sensing mechanism based on the trends from Raman and MASNMR studies. These studies establish and support sensing process wherein Sn(IV) in the SnO2 lattice gets partly converted to Sn(II) in the presence of hydrogen and the original species are recovered once the hydrogen atmosphere ceases to exist.
Journal: Sensors and Actuators B: Chemical - Volume 138, Issue 1, 24 April 2009, Pages 28–34