کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
751666 | 895251 | 2007 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Using support vector machine regression to model the retention of peptides in immobilized metal-affinity chromatography
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Retention of histidine-containing peptides in immobilized metal-affinity chromatography (IMAC) has been studied using several hundred model peptides. Retention in a Nickel column is primarily driven by the number of histidine residues; however, the amino acid composition of the peptide also plays a significant role. A regression model based on support vector machines was used to learn and subsequently predict the relationship between the amino acid composition and the retention time on a Nickel column. The model was predominantly governed by the count of the histidine residues, and the isoelectric point of the peptide.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Sensors and Actuators B: Chemical - Volume 125, Issue 1, 16 July 2007, Pages 149-157
Journal: Sensors and Actuators B: Chemical - Volume 125, Issue 1, 16 July 2007, Pages 149-157
نویسندگان
B.G. Kermani, I. Kozlov, P. Melnyk, C. Zhao, J. Hachmann, D. Barker, M. Lebl,