کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7538637 | 1488858 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A real-coded genetic algorithm for two-mode KL-means partitioning with application to homogeneity blockmodeling
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The two-mode KL-means partitioning (TMKLMP) problem has a number of important applications in the social and physical sciences. For example, the intra-block variability measure associated with TMKLMP underscores its direct relevance to two-mode homogeneity blockmodeling of binary and real-valued social networks. We present a real-coded genetic algorithm for obtaining TMKLMP solutions. A simulation study showed that the new algorithm compares favorably to a multistart implementation of a two-mode KL-means heuristic, which is recognized as a top-performing method for TMKLMP. The merit of the proposed method is demonstrated via an application to the blockmodeling of social network data associated with signing of environmental advertisements in the New York Times as a part of the Turning Point Project.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Social Networks - Volume 41, May 2015, Pages 26-35
Journal: Social Networks - Volume 41, May 2015, Pages 26-35
نویسندگان
Michael Brusco, Patrick Doreian,