کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7541154 | 1489047 | 2018 | 37 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Data envelopment analysis models for probabilistic classification
ترجمه فارسی عنوان
مدل های تجزیه و تحلیل داده ها برای طبقه بندی احتمالاتی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تحلیل پوششی داده ها، مشکل طبقه بندی طبقه بندی احتمالاتی، هزینه های غیرقابل طبقه بندی، شبکه های عصبی،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی صنعتی و تولید
چکیده انگلیسی
We propose and test three different probabilistic classification techniques using data envelopment analysis (DEA). The first two techniques assume parametric exponential and half-normal inefficiency probability distributions. The third technique uses a hybrid DEA and probabilistic neural network approach. We test the proposed methods using simulated and real-world datasets. We compare them with cost-sensitive support vector machines and traditional probabilistic classifiers that minimize Bayesian misclassification cost risk. The results of our experiments indicate that the hybrid approach performs as well as or better than other techniques when misclassification costs are asymmetric. The performance of exponential inefficiency distribution DEA classifiers is similar or better than that of traditional probabilistic neural networks. We illustrate that there are certain classification problems where probabilistic DEA based classifiers may provide superior performance compared to competing classification techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Industrial Engineering - Volume 119, May 2018, Pages 181-192
Journal: Computers & Industrial Engineering - Volume 119, May 2018, Pages 181-192
نویسندگان
Parag C. Pendharkar,