کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7543224 | 1489368 | 2018 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust estimation of fractional seasonal processes: Modeling and forecasting daily average SO2 concentrations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper deals with the estimation of seasonal long-memory time series models in the presence of 'outliers'. It is long known that the presence of outliers can lead to undesirable effects on the statistical estimation methods, for example, substantially impacting the sample autocorrelations. Thus, the aim of this work is to propose a semiparametric robust estimator for the fractional parameters in the seasonal autoregressive fractionally integrated moving average (SARFIMA) model, through the use of a robust periodogram at both very low and seasonal frequencies. The model and some theories related to the estimation method are discussed. It is shown by simulations that the robust methodology behaves like the classical one to estimate the long-memory parameters if there are no outliers (no contamination). On the other hand, in the contaminated scenario (presence of outliers), the standard methodology leads to misleading results while the proposed method is unaffected. The methodology is applied to model and forecast sulfur dioxide (SO2) pollutant concentrations which have seasonal long-memory features and occasional large peak pollutant concentrations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 146, April 2018, Pages 27-43
Journal: Mathematics and Computers in Simulation - Volume 146, April 2018, Pages 27-43
نویسندگان
Valdério Anselmo Reisen, Edson Zambon Monte, Glaura da Conceição Franco, Adriano Marcio Sgrancio, Fábio Alexander Fajardo Molinares, Pascal Bondon, Flávio Augusto Ziegelmann, Bovas Abraham,