کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7543483 | 1489489 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Finding a maximum 2-matching excluding prescribed cycles in bipartite graphs
ترجمه فارسی عنوان
پیدا کردن حداکثر 2 تطبیق به استثنای چرخه های مجاز در گراف دو طرفه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
کنترل و بهینه سازی
چکیده انگلیسی
We introduce a new framework for restricted 2-matchings close to Hamilton cycles. For an undirected graph (V,E) and a family U of vertex subsets, a 2-matching F is called U-feasible if |F[U]|â¤|U|â1 for each UâU, where F[U] is the set of edges in F induced by U. If F is a 2-factor, this property makes F satisfy the subtour elimination constraint for UâU. Our framework can describe Câ¤k-free 2-matchings, i.e., 2-matchings without cycles of at most k edges, and 2-factors covering prescribed edge cuts, both of which are intensively studied as relaxations of Hamilton cycles. While the problem of finding a maximum U-feasible 2-matching is NP-hard, we prove that the problem is tractable when the graph is bipartite and each UâU induces a Hamilton-laceable graph. This case generalizes the Câ¤4-free 2-matching problem in bipartite graphs. We establish a min-max theorem, a combinatorial polynomial-time algorithm, and decomposition theorems by extending the theory of Câ¤4-free 2-matchings. Our result provides the first polynomially solvable case for the maximum Câ¤k-free 2-matching problem for kâ¥5. For instance, in bipartite graphs in which every cycle of length six has at least two chords, our algorithm solves the maximum Câ¤6-free 2-matching problem in O(n2m) time, where n and m are the numbers of vertices and edges, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Optimization - Volume 26, November 2017, Pages 26-40
Journal: Discrete Optimization - Volume 26, November 2017, Pages 26-40
نویسندگان
Kenjiro Takazawa,