کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7547147 | 1489727 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Posterior consistency of g-prior for variable selection with a growing number of parameters
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recently, Bayesian procedures based on mixtures of g-priors have been widely studied for the variable selection problem in linear models. Maruyama and George (2011) proposed an explicit Bayesian approach without integral representation and showed its posterior model selection consistency when the number of parameters, k, is fixed. Given that linear models with a growing number of parameters have also received increasing attention in practice, we further concentrate on its corresponding posterior model selection consistency when k grows with the sample size, n, at the rate of k=O(nb),0â¤bâ¤1. Specifically, we consider the Bayesian approach with two most commonly used types of priors on the class of models and derive conditions under which the resulting Bayesian approaches achieve such consistency. In addition, we study the case for linear models with the non-normal errors. The proposed results are compared with the existing ones in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 196, August 2018, Pages 19-29
Journal: Journal of Statistical Planning and Inference - Volume 196, August 2018, Pages 19-29
نویسندگان
Min Wang, Yuzo Maruyama,