کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7547569 | 1489753 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Consistent model selection in segmented line regression
ترجمه فارسی عنوان
انتخاب مدل سازگار در رگرسیون خطی تقسیم شده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
چکیده انگلیسی
The Schwarz criterion or Bayes Information Criterion (BIC) is often used to select a model dimension, and some variations of the BIC have been proposed in the context of change-point problems. In this paper, we consider a segmented line regression model with an unknown number of change-points and study asymptotic properties of Schwarz type criteria in selecting the number of change-points. Noticing the over-estimating tendency of the traditional BIC observed in some empirical studies and being motivated by asymptotic behavior of the modified BIC proposed by Zhang and Siegmund (2007), we consider a variation of the Schwarz type criterion that applies a harsher penalty equivalent to the model with one additional unknown parameter per segment. For the segmented line regression model without the continuity constraint, we prove the consistency of the number of change-points selected by the criterion with such type of a modification and summarize the simulation results that support the consistency. Further simulations are conducted for the model with the continuity constraint, and we empirically observe that the asymptotic behavior of this modified version of BIC is comparable to that of the criterion proposed by Liu et al. (1997).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 170, March 2016, Pages 106-116
Journal: Journal of Statistical Planning and Inference - Volume 170, March 2016, Pages 106-116
نویسندگان
Jeankyung Kim, Hyune-Ju Kim,