کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7556894 | 1491299 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prediction of DNase I hypersensitive sites in plant genome using multiple modes of pseudo components
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
DNase I hypersensitive sites (DHSs) are accessible chromatin zones hypersensitive to DNase I endonucleases in plant genome. DHSs have been used as markers for the presence of transcriptional regulatory elements. It is an important complement to develop computational methods to identify DHSs for discovering potential regulatory elements. To the best of our knowledge, several machine learning approaches have been proposed for the DHSs prediction, but there is still room for improvements. In this work, a new predictor called pDHS-WE was proposed for prediction of DHSs in plant genome by using weighted ensemble learning framework. Here, five classes of heterogeneous features were used to represent the sequences. Five random forest (RF) operators were constructed based on these five classes of features. The proposed pDHS-WE was formed by fusing the five individual RF classifiers into an ensemble predictor. Genetic algorithm was employed to obtain the weights of different classes of features. In the experiments, pDHS-WE obtained accuracy of 88.5%, sensitivity of 89.1%, specificity of 88.0%, and AUC of 0.958, which was more than 2.7%, 2%, 3.5% and 2.6% higher than state-of-the-art methods, respectively. The results suggested that pDHS-WE may become a useful tool for transcriptional regulatory elements analysis in plant genome.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytical Biochemistry - Volume 549, 15 May 2018, Pages 149-156
Journal: Analytical Biochemistry - Volume 549, 15 May 2018, Pages 149-156
نویسندگان
Shanxin Zhang, Weichao Zhuang, Zhenghong Xu,