کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
757166 1462504 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fault detection of flywheel system based on clustering and principal component analysis
ترجمه فارسی عنوان
تشخیص گسل سیستم فلاش بر اساس خوشه بندی و تجزیه و تحلیل مولفه اصلی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی هوافضا
چکیده انگلیسی

Considering the nonlinear, multifunctional properties of double-flywheel with closed-loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of “integrated power and attitude control” system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS) can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the reachability-plot. Finally, the last step of proposed model is used to define the relationship of parameters in each operation through the principal component analysis (PCA) method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Aeronautics - Volume 28, Issue 6, December 2015, Pages 1676–1688
نویسندگان
, , , ,