کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
760644 1462875 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrogen production from palm kernel shell via integrated catalytic adsorption (ICA) steam gasification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Hydrogen production from palm kernel shell via integrated catalytic adsorption (ICA) steam gasification
چکیده انگلیسی


• The paper presents integrated catalytic adsorption (ICA) steam gasification for H2 yield.
• Effects of adsorbent to biomass, biomass particle size and fluidization velocity on H2 yield are examined.
• The present study produces higher H2 yield as compared to that obtained in literatures.
• The ICA provides enhancement of H2 yield as compared to independent catalytic and CO2 adsorption gasification systems.

The present study investigates the integrated catalytic adsorption (ICA) steam gasification of palm kernel shell for hydrogen production in a pilot scale atmospheric fluidized bed gasifier. The biomass steam gasification is performed in the presence of an adsorbent and a catalyst in the system. The effect of adsorbent to biomass (A/B) ratio (0.5–1.5 wt/wt), fluidization velocity (0.15–0.26 m/s) and biomass particle size (0.355–2.0 mm) are studied at temperature of 675 °C, steam to biomass (S/B) ratio of 2.0 (wt/wt) and biomass to catalyst ratio of 0.1 (wt/wt). Hydrogen composition and yield, total gas yield, and lower product gas heating values (LHVgas) increases with increasing A/B ratio, while particle size has no significant effect on hydrogen composition and yield, total gas and char yield, gasification and carbon conversion efficiency. However, gas heating values increased with increasing biomass particle size which is due to presence of high methane content in product gas. Meanwhile, medium fluidization velocity of 0.21 m/s favoured hydrogen composition and yield. The results showed that the maximum hydrogen composition and yield of 84.62 vol% and 91.11 g H2/kg biomass are observed at A/B ratio of 1.5, S/B ratio of 2.0, catalyst to biomass ratio of 0.1 and temperature of 675 °C. The product gas heating values are observed in the range of 10.92–17.02 MJ/N m3. Gasification and carbon conversion efficiency are observed in the range of 25.66–42.95% and 20.61–41.95%, respectively. These lower efficiencies are due to significant CO2 capturing in using adsorbent in pilot the scale fluidized bed gasification system. Comparative study with literature shows that the combination of adsorbent and catalyst produces better results in terms of hydrogen composition and gas heating values compared to that of only using biomass in steam catalytic gasification and in steam gasification with in situ CO2 adsorbent.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Conversion and Management - Volume 87, November 2014, Pages 1224–1230
نویسندگان
, , , ,