کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
761157 1462898 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neutronic characterization and decay heat calculations in the in-vessel fuel storage facilities for MYRRHA/FASTEF
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Neutronic characterization and decay heat calculations in the in-vessel fuel storage facilities for MYRRHA/FASTEF
چکیده انگلیسی

The main objective of the Central Design Team (CDT) project is to establish an engineering design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) that is the pilot plant of an experimental-scale of both an Accelerator Driven System (ADS) and a Lead Fast Reactor (LFR), based on the MYRRHA reactor concept, planned to be built during the next decade. The MYRRHA reactor concept is devoted to be a multi-purpose irradiation facility aimed at demonstrating the efficient transmutation of long-lived and high radiotoxicity minor actinides, fission products and the associated technology. An important issue regarding the reactor design of the MYRRHA/FASTEF experiment is the In-Vessel Fuel Storage Facilities (IVFSFs), both for fresh and spent fuel, as it might have an impact on the criticality of the overall system that must be quantified. In this work, the neutronic analysis of the in-vessel fuel storage facility and its coupling with the critical core was performed, using the state of the art Monte Carlo program MCNPX 2.6.0 and ORIGEN 2.2 computer code system for calculating the buildup and decay heat of spent fuel. Several parameters were analyzed, like the criticality behavior (namely the Keff), the neutron fluxes and their variations, the fission power production and the radiation damage (the displacements per atom). Finally, also the heat power generated by the fission products decay in the spent fuel was assessed.


► Monte Carlo design of reactor facilities.
► Neutron coupling assessment between critical core and fresh fuel in the storage vessels.
► Power contribution by induced fission from neutrons leaving the core, spontaneous fission and (α, n) sources.
► Power decay heat estimation for different reactor fuel cycles scenarios.
► Material damage assessment in the storage vessels.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Conversion and Management - Volume 64, December 2012, Pages 522–529
نویسندگان
, , , , ,