کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
761854 1462707 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A three-dimensional phase field model coupled with a lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field
ترجمه فارسی عنوان
یک مدل میدان سه بعدی سه بعدی و یک حل کننده جنبشی شبکه برای مدل سازی رشد کریستال در کوره با چرخش بوته شتاب و حرکت میدان مغناطیسی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
چکیده انگلیسی


• Developed a highly-parallel three-dimensional numerical model for crystal growth.
• Developed a three-dimensional phase-field method to track crystal growth interface.
• Studied the impact of chemical component’s transport process on crystal growth.
• Studied the effect of accelerated crucible rotation technique on crystal growth.
• Studied the effect of traveling magnetic field on crystal growth.

In this study, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component’s transport process. The evolution of the crystal growth interface is simulated using the phase-field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth. Numerical results indicate that ACRT can slightly increase the quality of grown crystal, but the effect of TMF on quality of grown crystal depends on the temperature profile of the ampoule wall. Finally, excellent scalability of our developed parallel methods is demonstrated on the three-dimensional cases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Fluids - Volume 103, 1 November 2014, Pages 204–214
نویسندگان
, , ,