کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
763589 | 1462866 | 2015 | 17 صفحه PDF | دانلود رایگان |
• A new isolated/remote area wind power/energy supply is presented.
• Double-fed Induction Generator is used in the supply system.
• Proposed supply is capable of supplying balanced, unbalanced & non-linear loads.
• New and very simple control method for rotor-front converter is proposed.
• An improved control technique for load/stator-front converter is presented.
This paper examines the application of the Double-fed Induction Generator for an isolated wind power system to supply the remote area. The isolated wind energy system using Double-fed Induction Generator is capable of supplying different loads such as balanced, unbalanced and nonlinear loads. The isolated wind energy supply is designed by using wound rotor induction generator and partial scale back to back connected voltage source converters at rotor side. The voltage source converters are called rotor-front voltage source converter and load/stator-front voltage source converter having the common capacitive direct current link. The presented study investigates the application stator/load side converter for load harmonics mitigation in isolated Double-fed Induction Generator based Wind Power Supply System. The shunt active power filter function is added in the convention control scheme of the load/stator-front voltage source converter to improve load harmonics. The control scheme proposed for stator/load side converter is based on the instantaneous active and reactive component of the load current method. Also a new and simple technique for rotor side converter is presented to regulate Voltage and Frequency at stator/load terminals. Different possible case studies are presented to show the effectiveness of both techniques proposed. Simulation results obtained from a 2 MVA Double-fed Induction Generator based wind power system, prototype in MATLab/Simulink, are given and discussed in this paper.
Journal: Energy Conversion and Management - Volume 96, 15 May 2015, Pages 473–489