کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
767900 | 897238 | 2009 | 12 صفحه PDF | دانلود رایگان |

The structural reliability of a composite component locally reinforced with a fibrous metal matrix composite is essentially affected by the micro-scale failures. The micro-scale failures such as fiber fracture or matrix damage are directly governed by the internal stress states such as mismatch thermal stress. A proper computational method is needed in order to obtain micro-scale stress data for arbitrary thermo-mechanical loads. In this work a computational scheme of microscale failure analysis is presented for a composite component. Micromechanics-based triple-scale FEM was developed using composite laminate element. The considered composite component was a plasma-facing component of fusion reactors consisting of a tungsten block and a composite cooling tube. The micro-scale stress and strain data were estimated for a fusion-relevant heat flux load. Ductile damage of the matrix was estimated by means of a damage indicator. It was shown that the risk of micro-scale composite failure was bounded below an acceptable level.
Journal: Engineering Fracture Mechanics - Volume 76, Issue 10, July 2009, Pages 1425–1436