کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7703062 | 1496861 | 2018 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Synthesis, characterization and sonocatalytic applications of nano-structured carbon based TiO2 catalysts
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In order to enhance sonocatalytic oxidation of a recalcitrant organic pollutant, rhodamine B (RhB), it is necessary to study the fundamental aspects of sonocatalysis. In this study, TiO2-incorporated nano-structured carbon (i.e., carbon nanotubes (CNTs) or graphene (GR)) composites were synthesized by coating TiO2 on CNTs or GR of different mass percentages (0.5, 1, 5, and 10â¯wt%) by a facile hydrothermal method. The sonocatalytic degradation rates of RhB were examined for the effect of ultrasound (US) frequency and calcination temperature by using the prepared TiO2-NSC composites. Since US frequency affected the sonoluminescence (SL) intensities, it was proposed that there exists a correlation between the surface area or band-gap of the sonocatalysts and the degradation kinetic constants of RhB. In addition, the reusability of TiO2-GR composites was also investigated. Overall, the performance of TiO2-GRs prepared by the hydrothermal method was better than that of calcined TiO2-CNTs. Among TiO2-GRs, 5% GR incorporated media (TiO2-GR-5) showed the best performance. Interestingly, the kinetic constants of sonocatalysts prepared under hydrothermal conditions had a negative linear relationship with the band-gap energy for the corresponding media. Furthermore, the strongest SL intensity and highest degradation rates of RhB for both carbonaceous composites were observed at 500â¯kHz. The kinetic constants of calcined media decreased linearly as the specific area of the media decreased, while the band-gap energy could not be correlated with the kinetic constants. The GR combined TiO2 composite might be a good sonocatalyst in wastewater treatment using ultrasound-based oxidation because of its high stability.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultrasonics Sonochemistry - Volume 43, May 2018, Pages 193-200
Journal: Ultrasonics Sonochemistry - Volume 43, May 2018, Pages 193-200
نویسندگان
Jongbok Choi, Mingcan Cui, Yonghyeon Lee, Jeonggwan Kim, Yeomin Yoon, Min Jang, Jeehyeong Khim,