کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7703292 1496862 2018 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A simple approach for the sonochemical loading of Au, Ag and Pd nanoparticle on functionalized MWCNT and subsequent dispersion studies for removal of organic dyes: Artificial neural network and response surface methodology studies
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
A simple approach for the sonochemical loading of Au, Ag and Pd nanoparticle on functionalized MWCNT and subsequent dispersion studies for removal of organic dyes: Artificial neural network and response surface methodology studies
چکیده انگلیسی
In this study, the artificial neural network (ANN) and response surface methodology (RSM) based on central composite design (CCD) were applied for modeling and optimization of the simultaneous ultrasound-assisted removal of quinoline yellow (QY) and eosin B (EB). The MWCNT-NH2 and its composites were prepared by sonochemistry method and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis's. Initial dyes concentrations, adsorbent mass, sonication time and pH contribution on QY and EB removal percentage were investigated by CCD and replication of experiments at conditions suggested by model has results which statistically are close to experimented data. The ultrasound irradiation is associated with raising mass transfer of process so that small amount of the adsorbent (0.025 g) is able to remove high percentage (88.00% and 91.00%) of QY and EB, respectively in short time (6.0 min) at pH = 6. Analysis of experimental data by conventional models is good indication of Langmuir efficiency for fitting and explanation of experimented data. The ANN based on the Levenberg-Marquardt algorithm (LMA) combined of linear transfer function at output layer and tangent sigmoid transfer function at hidden layer with 20 hidden neurons supply best operation conditions for good prediction of adsorption data. Accurate and efficient artificial neural network was obtained by changing the number of neurons in the hidden layer, while data was divided into training, test and validation sets which contained 70, 15 and 15% of data points respectively. The Average absolute deviation (AAD)% of a collection of 128 data points for MWCNT-NH2 and composites is 0.58%.for EB and 0.55 for YQ.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultrasonics Sonochemistry - Volume 42, April 2018, Pages 422-433
نویسندگان
, , , ,