کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
773100 1462911 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data mining based sensor fault diagnosis and validation for building air conditioning system
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Data mining based sensor fault diagnosis and validation for building air conditioning system
چکیده انگلیسی

A strategy based on the data mining (DM) method is developed to detect and diagnose sensor faults based on the past running performance data in heating, ventilating and air conditioning (HVAC) systems, combining a rough set approach and an artificial neural network (ANN). The reduced information is used to develop classification rules and train the neural network to infer appropriate parameters. The differences between measured thermodynamic states and predicted states obtained from models for normal performance (residuals) are used as performance indices for sensor fault detection and diagnosis. Real test results from a real HVAC system show that only the temperature and humidity measurements of many air handling units (AHU) can work very well as the measurements to distinguish simultaneous temperature sensor faults of the supply chilled water (SCW) and return chilled water (RCW).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Conversion and Management - Volume 47, Issues 15–16, September 2006, Pages 2479–2490
نویسندگان
, , , ,