کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
776206 1463482 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of artificial neural network and multiple linear regression models to predict optimum bonding strength of heat treated woods
ترجمه فارسی عنوان
مقایسه شبکه عصبی مصنوعی و مدل رگرسیون چندگانه خطی برای پیش بینی مقاومت باند مطلوب جنگلهای تحت تابش گرمایی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی

In this study, an artificial neural network (ANN) model was developed for predicting an optimum bonding strength of heat treated woods. The MATLAB Neural Network Toolbox was used for the training and optimization of the ANN model. The ANN model having the best prediction performance was detected by trying various networks. Then, the ANN results were compared with the results of multiple linear regression (MLR) model. It was shown that the ANN model produced more successful results compared to MLR model in all cases. The mean absolute percentage errors (MAPE) were found as 1.49% and 3.06% in the prediction of bonding strength values for training and testing data sets, respectively. Determination coefficient (R2) values for training and testing data sets in the prediction of bonding strength by ANN were 0.997 and 0.986, respectively. The results also indicated that the designed model is a useful, reliable and quite effective tool for optimizing the effects of heat treatment conditions on bonding strength of wood. Thanks to using optimum bonding strength values obtained by the model, the increase of the bonding quality of wood products can be provided and the costs for experimental material and energy can be reduced.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Adhesion and Adhesives - Volume 55, December 2014, Pages 29–36
نویسندگان
, , ,