کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7774 | 563 | 2012 | 13 صفحه PDF | دانلود رایگان |
The development of immunoliposomes for systemic siRNA (small interfering RNA) delivery is highly desired. We reported previously the development of targeted LPD (liposome–polycation–DNA complex) conjugated with anti-EGFR (epidermal growth factor receptor) Fab′ (TLPD-FCC) for siRNA delivery, which showed superior gene silencing activity in EGFR-overexpressing breast cancers. However, TLPD-FCC did not achieve satisfactory gene silencing activity in EGFR-overexpressing hepatocellular carcinoma (HCC). In this study, some modifications including increased antibody conjugation efficiency and reduced PEGylation degree were made to TLPD-FCC to increase gene silencing activity in HCC. The resultant optimized liposomes denoted as TLPD-FP75 efficiently bound and delivered to EGFR-overexpressing HCC, resulting in enhanced gene silencing activity compared to untargeted LPD (NTLPD-FP75). Tissue distribution in vivo revealed that the accumulation of TLPD-FP75 was higher than NTLPD-FP75 in orthotopic HCC model of mice. The promoted uptake of TLPD-FP75 in HCC cells was confirmed by confocal microscopy. To investigate the in vivo gene silencing activity, we administered TLPD-FP75 by intravenous injections into mice bearing orthotopic HCC. The results showed TLPD-FP75 potently suppressed luciferase expression, while little silencing was observed in NTLPD-FP75. TLPD-FP75 was demonstrated to possess potent gene silencing activity in HCC and will potentially increase the feasibility of HCC gene therapy.
Journal: Biomaterials - Volume 33, Issue 1, January 2012, Pages 270–282